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Abstract. Borel summable semiclassical expansions in 1D quantum mechanics are considered.
These are the Borel summable expansions of fundamental solutions and of quantities constructed
with their help. An expansion, called topological, is constructed for the corresponding Borel
functions. This allows us to study the Borel plane singularity structure in a systematic way.
Examples of such structures are considered for linear, harmonic and anharmonic potentials.
Together with the best approximation provided by the semiclassical series the exponentially small
contributions completing the approximation are considered. A natural method of constructing such
exponential asymptotics based on the Borel plane singularity structures provided by the topological
expansion is developed. The method is used to form the semiclassical series including exponential
contributions for the energy levels of the anharmonic oscillator.

1. Introduction

In this paper we continue our investigations to represent basic quantities of the quantum
mechanics in the form of Balian–Bloch representation, i.e. in the form of the Laplace–Borel
transforms in which the conjugate variables are an action and the Planck constant [1]. The
key results, which this paper is based on, have been published earlier [2]. The present paper
develops these key ideas and, using the explicit form of the fundamental solutions [11,12] to
the 1D Schr̈odinger equation, expresses the Balian–Bloch representation in the form of what
we call a topological expansion. We also describe the way to use the representation to construct
extended JWKB approximations in the form of so-called exponential asymptotics (sometimes
called also hyperasymptotics, (see [23–28] and references therein) and we also consider some
particular applications of the Balian–Bloch method.

For simplicity, the potentials considered in this paper are assumed to be polynomial but
the main results are valid for more general meromorphic potentials as well.

Being Borel summable, the fundamental solutions define the corresponding Borel
functions by which they can be represented in the form of Borel transformation from the
Borel plane of the action variable to the complex plane of the ¯h−1 variable. For the polynomial
potentials these Borel functions are in fact all the same despite the fact that they are defined
by different fundamental solutions [3]. This means, of course, that the fundamental solutions
themselves are in close relation to each other, being, in fact, a mutual analytical continuation
of each other in the ¯h−1 plane [2,3].

Therefore, to get any of the fundamental solutions it is only necessary to properly
choose an integration path in the Borel plane. However, to do this a detailed knowledge
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of singularity distribution of the Borel function in the Borel plane is necessary. It is the aim
of this paper to provide us with an effective tool for studying these singularities. Namely,
we develop an expansion for the Borel function, called toplogical, in which an expansion
parameter is the complexity of the Borel plane corresponding to successive terms of the
expansion.

With the help of the fundamental solutions we can solve most 1D quantum mechanical
problems so that the corresponding quantities involved in the problems considered depend on
different pieces of the fundamental solutions used. These quantities themselves can then have
semiclassical representations which can be Borel summable and can serve as a source of their
semiclassical approximations as well. It is clear that the corresponding Borel plane singularities
of these quantities are then defined by the pieces of the fundamental solutions constructing
them. Therefore the topological expansion method can also be applied to determine the
approximate singularity structure for these quantities.

The semiclassical expansions used as a source of approximations are considered as
insufficient, providing us with unavoidable nonvanishing errors. It is well known that the
reasons for these errors are due to the divergence of the semiclassical series so that the latter,
as asymptotic, neglect the exponentially small contributions. Nevertheless, since the series are
Borel summable they have to contain the full information about such exponential contributions.
A common approach was simply to recover these contributions, leading to a formulation of
so-called resurgent theory [25–28].

Note, however, that the exponentially small contributions have their own importance
since in many cases these contributions aredominant. The best known such case is the
difference between the energy levels of different parities in the symmetric double well [31].
But there are also the cases of transition probabilities in the tunnelling phenomena [31] or their
adiabatic limits in the time-dependent problem of transitions between two (or more) energy
levels ([33, 34] and references therein) or the exponential decaying of resonances in the weak
electric field (see [35,36] and references therein).

In this paper we make full use of the Borel summability of the quantities considered
as well as of the corresponding topological expansions to construct the relevant exponential
asymptotics.

However, a necessary step of our formulation is knowledge of the Borel plane singularity
structure of any considered quantity. This is simply the topological expansion which allows
us to assemble the knowledge step by step.

The toplogical expansion is constructed directly from the Fröman and Fr̈oman
representation of the fundamental solutions which themselves are given in the forms of
functional series [2–4]. Therefore, we begin in section 2 with a detailed presentation of
the series.

In section 3 the topological series representation for the Borel functions is introduced and
its convergence is proved. This representation provides us with an algorithm for approximate
calculations of Borel functions alternative to the ones based on Padé approximants [5,8,9,14],
continued fractions [10] or conformal transformations [14].

In section 4, singularity structures of the topological series expansion are analysed and
their hierarchic form (which gives rise to the name of the series) is established. We consider
there as the simplest examples the ‘first sheet’ singularity structures of the linear and harmonic
potentials. In particular, we completely describe the singularity structure of the Borel plane of
the harmonic oscillator Joos function found first by Voros by a different method [19].

The results obtained in sections 3 and 4 are applied in section 5 where the solution of
the so-called connection problem within the framework of the Balian–Bloch representation is
discussed.
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Figure 1. The Stokes graph for a general polynomial potential ofnth degree.

In section 6 we discuss the problem of the exponential asymptotics [23–28]. We show
that this problem has a natural solution in the framework of the Balian–Bloch representation
and gets natural support from the topological expansion method.

In section 7 the energy levels of the single-well anharmonic potential are considered in
order to show how to use the topological expansion to construct their extended exponential
asymptotics.

Finally, in section 8 we summarize our results.

2. Fundamental solutions

Let us recall the basic notions of our considerations (see [2] for details).
The fundamental solutions satisfy the Schrödinger equation:

9 ′′(x, λ,E)− λ2q(x,E)9(x, λ,E) = 0 (2.1)

whereq(x,E) = V (x) − E, λ = √2mh̄−1. Bothλ and the energyE can take on complex
values.V (x) is assumed to be a polynomial of any degreen > 1.

A set of fundamental solutions is attached in a unique way to the so-called Stokes
graph corresponding to a given polynomial potentialV (x). A relevant piece of the graph
is shown in figure 1. Each Stokes graph is a collection of lines (Stokes lines) in the complex
x-plane which are loci of vanishing of the real parts of actions defined by the integrals
Wi(x,E) =

∫ x
xi
q

1
2 (y, E)dy, i = 1, . . . , n, wherexi are roots ofq(x,E). In what follows we

shall also assume that energyE is in a generic position, i.e. all the roots ofq(x,E) are simple.
In such a case three Stokes lines emerge from each root, as is shown in figure 1. (A bold
line in the figure denotes its technical border.) The wavy lines in the figure denote cuts of the
two-sheeted Riemann surface of thex-variable on whichq

1
2 (x, E) is really defined. Because

of this there is also another copy of the Stokes lines lying on the second sheet (the latter being
not visible, lying below the first one shown in figure 1) which position on the sheet coincides,
however, with that of the Stokes lines of the first sheet shown in figure 1.

The fundamental solutions are defined in infinite connected domains called sectors with
boundaries of the latter consisting of the Stokes lines andxi . The sectors of the first sheet are
shown in figure 1, where they are denoted byS1, S2, . . . , Sn+2. The corresponding sectors on
the second sheet shall be denoted byS ′1, S

′
2, . . . , S

′
n+2. (Note that a total number of sectors on
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each sheet is equal ton+2 for a polynomial potential of degreen.) Two fundamental solutions
which can be defined in the corresponding sectorsSk andS ′k coincide however (up to a phase
factor±i), representing with the accuracy mentioned the same holomorphic solution to (2.1).
Therefore, there are onlyn + 2 pairwise independent fundamental solutions.

The above identity of the fundamental solutions defined in the corresponding sectorsSk
andS ′k should be held in mind since it is used permanently in this paper in the procedure of
the analytical continuation, both inx andλ, of the holomorphic solution represented by each
of these two fundamental solutions.

The following fundamental solution9σ
1 (x, λ,E) to (2.1) can be attached to the sectorS1:

9σ
1 (x, λ,E) = q−

1
4 (x, E)eσλ

∫ x
x1
q

1
2 (y,E) dy

χσ1 (x, λ,E)Re

[
σλ

∫ x

x1

q
1
2 (y, E)dy

]
< 0

x ∈ S1 σ = ±1 q(x1, E) = 0
(2.2)

with the ‘amplitude factor’χσ1 (x, λ,E) given by the following functional series:

χσ1 (x, λ,E) = 1 +
∑
n>1

( σ
2λ

)n ∫
γ σ1 (x)

dy1 . . .

∫
γ σ1 (yn−1)

dynω(y1) . . . ω(yn)

×[1− e2λξ(y1,x)][1 − e2λξ(y2,y1)] . . . [1− e2λξ(yn,yn−1)] (2.3)

where

ω(y) = 1

4

[
q ′′(y)

q
3
2 (y)
− 5

4

q ′2(y)

q
5
2 (y)

]
= −q− 1

4 (y)(q−
1
4 (y))′′

ξ(x1, x) = −σ
∫ x

x1

q
1
2 (y, E)dy

(2.4)

and where an obvious dependence ofω, q, ξ , etc onE has been dropped. We shall also put
σ = −1 in (2.2)–(2.4) assuming that in (2.2) the corresponding inequality is satisfied in this
case.

The integration pathγ σ1 in (2.3) starts from the infinity of the sectorS1. The points
x, y1, . . . , yn−1 of the path defining thenth multiple integral in (2.3) are ordered in such a
way as to satisfy the condition (2.2) for each ordered pair(yk, yk−1) taken as the limits of the
integral in (2.2). Such a path is called canonical.

Then+1 fundamental solutions which can be defined in the remaining sectors of the Stokes
graph of figure 1 can be obtained from the solution91(x, λ,E) by the analytic continuation,
both inx andλ.

To get the fundamental solution92(x, λ), for example, we can continue it inλ rotating
the latter clockwise by the angleπ . As follows from (2.2) the Stokes lines then rotate
counterclockwise around their turning points by the angles 2π/3 reconstructing eventually their
initial positions. The sectors follow these rotations in the orderS1→ S2→ · · · → Sn+2→ S1

so that the infinite end of the pathγ1 (its finite end at the pointx is kept, of course, fixed)
rotates withS1 to S2. The pathγ1 deformed in this way remains however canonical in the
corresponding formula (2.2) defining92(x, λ). Next, if we wish, we can movex from S1 to
S2 shifting it simply back toS2 alongγ1.

We can apply the above procedure to obtain9n+2(x, λ)as well rotatingλ counterclockwise
by π .

Therefore, the fundamental solutions92(x, λ) and9n+2(x, λ) are defined in the ‘λ-plane’
on both the sides of its cut made along the negative half of the real axis whilst91(x, λ) is defined
on the positive half of the latter, see figure 2 (where the wavy line means the corresponding
cut).
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Figure 2. The cutλ-plane corresponding to the solution91(x, λ) and its analytical continuations
in this plane.

Let us note also that to define the fundamental solution in the sectorS ′1 it is enough to
substituteσ in (2.2)–(2.4) by−σ . Thenx is (obviously) unchanged whilstξ changes its sign.

In the sectorS1 the following semiclassical expansion forχ1(x, λ) takes place:

χ1(x, λ) ∼ χas1 (x, λ) = 1 +
∑
n>1

κ1,n(x)

(2λ)n

κ1,n(x) =
∫ x

∞k

dynq
− 1

4 (yk)

(
q−

1
4 (yn)

∫ yn

∞k

dyn−1q
− 1

4 (yn−1) (2.5)

×
(
. . . q−

1
4 (y2)

∫ y2

∞k

dy1q
− 1

4 (y1)

(
q−

1
4 (y1)

)′′
. . .

)′′)′′
k = 1, 2, . . . .

As it has been shown in [2] ifx stays inS1 of figure 1 then we can define for Res < 0 the
following Laplace transformation of the amplitude factorχ1(x, λ):

χ̃1(x, s) = 1

2π i

∫
C

e−2λs χ1(x, λ)

λ
dλ (2.6)

with the integration contourC shown in figure 2. (The factor 2 in the exponential function
in (2.6) is introduced for convenience.) By the form (2.6)χ̃1(x, s) is defined holomorphically
in the half-plane Res < Reξ(x1, x) and since Reξ(x1, x) is positiveχ̃1(x, s) appears to be,
in fact, the Borel transform ofχ1(x, λ). The contourC in (2.6) can be chosen as a circle with
its radiusλ to be large enough to substituteχ1(x, λ) by its semiclassical series (2.5). Then for
|s| < |ξ(x1, x)| the lhs of (2.6) can be integrated to give the following Borel series:

χ̃1(x, s) = 1 +
∑
n>1

κ1,n(x)
(−s)n
n!

(2.7)

convergent in the circle|s| < |Reξ(x1, x)|. The points0(x) = ξ(x1, x) is a singularity for
χ̃1(x, s) closest to the origin.

The transformations (2.6) can be inverted to give

χ1(x, λ) = 2λ
∫
C̃

e2λsχ̃1(x, s)ds (2.8)
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Figure 3. Theξ -plane singularities corresponding to8̃(0)1 (ξ, s) (caseq = 0).

where the contour̃C starts at the infinity Re(λs) = −∞ and ends ats = 0. SinceC̃ can be
freely deformed in the half-plane Res 6 0 the formula (2.8) definesχ1(x, λ) in the whole
sheet shown in figure 2 excluding the points of the negative real half-axis.

The following is worth noting. Formula (2.8) is certainly valid for Reλ > 0 when the
contourC̃ stays in the half-plane Res < 0. It can be continued, however, to other domains of
the Riemannλ-surface corresponding toχ1(x, λ) if accompanied by suitable changes of the
variablex. Thus, for example, when continuingx to the sectorS2 and deforming the contourC
in figure 2 intoC1 (2.6) will then defineχ̃1(x, s) in the half-plane Res > 0. On the other hand,
the inverse formula (2.8) defines thenχ1(x, λ) in the half-plane Reλ < 0 with the contourC in
the formula deformed (anticlockwise) from its position in the left half-plane to its new position
in the right half of thes-plane. The functionχ1(x, λ) then fulfils for λ > 0 the condition
χ1(x,−λ) ≡ χ2(x, λ). Possible singularities of̃χ1(x, s) existing in the corresponding half-
plane Res > 0 whenx stays in the sectorS1 move to the half-planes Res < 0 whenx moves
to the sectorS2 (see also section 5 for a relevant discussion).

3. Topological expansion of Borel function ˜χ1(x, s)

As follows from the definition ofχ̃1(x, s), if we want to learn something about it we have to
analyseχ1(x, λ) as given by (2.3). We shall show below that ifx stays inS1 (see figure 1)
then it is possible to represent each term of the series in (2.3) in the form of the Laplace
transformation, i.e. we shall show thatχ̃1(x, s) can also be represented by some convergent
functional series. The series, however, can be continued further to the wholex-plane, the latter
being deprived of some vicinities of its turning points.

To this end let us consider thenth term of the series in (2.3) and particularly itsn-fold
integral. Introducingξ = ξ(x) = ξ(x1, x) as a new integration variable we get

Yn(ξ, λ) =
∫
γ̃1(ξ)

dξ1 . . .

∫
γ̃1(ξn−1)

dξnω̃(ξ1) . . . ω̃(ξn)(1− e2λ(ξ−ξ1)) . . . (1− e2λ(ξn−1−ξn))

(3.1)

whereω̃(ξ(x)) ≡ ω(x)q− 1
2 (x) and the path̃γ1(ξ) starts from Reξ = +∞ and ends at the point

ξ of theξ -plane.
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Let us discuss some basic properties of the transformationξ = ξ(x). First it maps the
two-sheeted Riemann surface which thex-plane actually is into another (in general infinitely
sheeted) Riemann surface on which each sector of figure 1 is represented by the right (left)
half-planes. In particular, sectorS1 in figure 1 is mapped into the right half of this cutξ -
plane and sectorsS2, S3 andSn+2 into the left ones (see figure 3 where the sectorsS2 and
Sn+2 lie below the sheet shown). Zeros ofq(x) which are singular points forω(x)q−

1
2 (x) are

also suitably transformed into the corresponding root branch points (of the third degree) of
ω̃(ξ) on theξ -Riemann surface (see figure 3 and appendix B). On this surfaceω̃(ξ) becomes
additionally infinitely periodic with its complex periods acting, however, betweendifferent
sheets of the surface. As a result of this an image of each root ofq(x) proliferates infinitely on
theξ -Riemann surface with every such copy giving rise to new branch point and sheet. The
only exception of the latter rule is the linear potential case theξ -Riemann surface of which is
three-sheeted with a single root branch point of the third degree.

Positions of the Stokes lines in figure 3 depend on argλ. For instance, for the latter
argument equal to 0,±π,±2π . . . all the Stokes lines emerging from the branch points
ζ1, ζ2, . . . are parallel to the imaginary axis keeping their parallelness for any argλ. To avoid,
however, the possible confusion of identifying cuts with the Stokes lines plotted in the same
figures, the latter arenot depicted in figures 2 and 3 or on the remaining ones being assumed
to be parallel to the imaginary axis on each sheet (this corresponds to the choice argλ = 0).

The bold lines (solid or dashed) in figure 3 denote therefore thecuts emerging from the
branch pointsζ1, ζ2, . . . . According to a common convention each cut drawn on a given sheet
represents two parallel boundaries (edges) of the sheet by which the latter can contact (be
‘glued’) to the corresponding boundaries of other sheets. The edges themselves are pictures
of two different lines of thex-plane along which the action variableξ has the same value at
the corresponding points of the lines. We are free in choosing these lines and in designing
the gluing of the corresponding edges so that cuts can have arbitrary, independent ofλ and
of themselves, directions, depending only on our wish to show the desired parts of sheets in
figure 3 that we are interested in. Those actually in the figure were drawn to show the sectors
S1 andS3. One of these cuts emerging ofζ2 is a picture of the two Stokes lines emerging of
the pointx2 of figure 1 and being the boundary of the sectorS2. That emerging from the point
ζ1(= 0) is a picture of another two lines emerging from the pointx1 in figure 1. Neither of
them coincides with any of the Stokes lines. One of these lines runs to the infinity of sectorS1

whilst the other runs to another sector infinity (not shown in figure 1) crossing a strip formed
by the Stokes lines coming out from the pointsx1 andxn. Neither coincides with any of the
Stokes lines. To show sectorS2 in the figure, for example, we would have to rotate the cut
emerging fromζ2 anticlockwise byπ to its new vertical position. However, we could rotate the
cut byπ/2 only to the horizontal position to get the pattern where both the sectors are partly
visible,S2 above andS3 below the cut. But to show sectorSn+2 together with the branch point
ζ3, we have to rotate the cut emerging fromζ1(= 0) clockwise by an angle larger thanπ (to
the position betweenζ3 andξ ). Of course, by this operation the sectorS3 and the branch point
ζ2 are screened off. In this way, rotating cuts properly, we can achieve any desired situation.

To complete this discussion let us note a common convention (see [37], for example), of
making cuts parallel to imaginary axes too. In such a case the corresponding cut coincides with
two different Stokes lines whilst the third Stokes line emerges from the relevant branch point
in the direction opposite to that of the cut. Of course, the two ‘coinciding’ Stokes lines then
in fact constitute two parallel edges of the corresponding cut. A convenience of cutting sheets
in this way is an easy identification of the definite domains of the sheets with corresponding
sectors of the Stokes graph. (For example, two neighbouring sectors with a common Stokes
line in figure 3 have to be separated by a cut if this line is not actually chosen as an edge of
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this cut.) The inconvenience is, as we mentioned earlier, the risk of mistakenly identifying the
cuts made in this way, with the Stokes lines themselves. Nevertheless, when the sheets and the
cuts joining them have been designed in this way then fitting the sheets together in a different
way is only a matter of actual needs and some imagination.

Opening the brackets in (3.1) we get

Yn(ξ, λ) = Y (0)n; +
∑

262q6n

∑
16r1<···<r2q6n

Y
(2q)
n;r1...r2q (ξ, λ)(−1)r1+r2+r3+···+r2q−1+r2q

+
∑

162q+16n

∑
16r1<···r2q+16n

Y
(2q+1)
n;r1...r2q+1

(ξ, λ)(−1)r1+r2+r3+···+r2q+1 (3.2)

where

Y
(0)
n; (ξ) =

∫
γ̃1(ξ)

dξ1 . . .

∫
γ̃1(ξn−1)

dξnω̃(ξ1) . . . ω̃(ξn) = �n(ξ)

n!
(3.3)

with

�(ξ) =
∫
γ̃1(ξ)

dηω̃(η) (3.4)

and

Y
(2q)
n;r1...r2q (ξ, λ) =

∫
γ̃1(ξ)

dξ1 . . .

∫
γ̃1(ξn−1)

dξnω̃(ξ1) . . . ω̃(ξn)e
2λ(ξr1−ξr2+ξr3−···+ξr2q−1−ξr2q )

Y
(2q+1)
n;r1...r2q+1

(ξ, λ) =
∫
γ̃1(ξ)

dξ1 . . .

∫
γ̃1(ξn−1)

dξnω̃(ξ1) . . . ω̃(ξn)e
2λ(ξ−ξr1+ξr2−ξr3+···+ξr2q−ξr2q+1)

q = 1, 2, 3, . . . .

(3.5)

Note that all the integrals in (3.5) are absolutely convergent. Therefore, it should now be
obvious that to each integral in (3.5) the following Laplace transformation form can be given:

Y
(q)

n;r1...rq (ξ, λ) =
∫
C̃

dse2λs Ỹ
(q)

n;r1...rq (ξ, s) q = 0, 1, . . .

where the integration contour̃C starts at Res = −∞ and ends ats = 0 and the Laplace
transform Ỹ

(q)

n;r1...rq (ξ, s) is to be determined. We do this in appendix A. An important
observation made there is that it is possible to rearrange the order of terms in the series (2.3)
in such a way as to sum it in accordance with the increasingq rather thann—the number of
integrations in (3.5). (All these are still possible since the series (2.3) is absolutely convergent.)
As a result of such reorderingχ1(ξ, λ) can be represented as the following sum:

χ1(ξ, λ) = 2λ
∑
q>0

χ
(q)

1 (ξ, λ)

ξ ∈ S̃1 | argλ| < π

(3.6)

where

χ
(q)

1 (ξ, λ) =
∫
C̃

dse2λs8̃
(q)

1 (ξ, s) (3.7)

with 8̃(q)(ξ, s), q > 0 given by (A.12) of appendix A and with the contourC̃ shown in figure 5.
Of course, since the series (3.6) is absolutely and uniformly convergent we also have

χ1(ξ, λ) = 2λ
∫
C̃

dse2λs8̃1(ξ, s) (3.8)

with 8̃1(ξ, s) given by (A.11) so that the corresponding Laplace transformχ̃1(ξ, s) defined
by (2.6) can be identified as

χ̃1(ξ, s) ≡ 8̃1(ξ, s). (3.9)
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The expansions (3.6) and (A.10) shall be called further topological expansions for the
following two reasons:

(1) the higher the term of the series in (A.12), the more complicated is its Riemann surface;
(2) the Riemann surfaceRq corresponding to the term̃8(q)

1 (ξ, s) in (A.11) can be reduced to
someRq ′ with q ′ < q when deprived of some singular points of8̃(q)

1 (ξ, s), i.e. a set6q of
all singularities of8̃(q)

1 (ξ, s) includes a set6q ′ corresponding tõ8(q)

1 (ξ, s) (see the next
section).

3.1. Analytic properties of̃χ1(ξ, s)

The analytic properties of̃χ1(ξ, s) are established in section A.3. It follows that the Laplace
transformχ̃1(ξ, s) is holomorphic in some vicinity of the points = 0 for ξ ∈ R(d ′′). R(d ′′)
is theξ -Riemann surface deprived of itsd ′′-vicinities of all its singular points, see (A.3): i.e.
it is the Borel function (2.7) corresponding toχ1(ξ, λ). For Reξ > 0, however,χ̃1(ξ, s) is
holomorphic in the half-plane Res < Reξ . Therefore, the asymptotic series constructed for
χ1(ξ, λ) whenλ → ∞ is Borel summable to the function itself—a result which is in full
accordance with the corresponding one obtained in [2] and mentioned in section 2.

4. Singularity structure of χ̃1(ξ, s)

Because of (3.10) this is the singularity structure of8̃1(ξ, s). This structure is determined by
the corresponding singularity structures of8̃

(q)

1 (ξ, s) due to (A.10). These structures can be
investigated by the analytic continuation procedure of formulae (A.11), (A.12) with respect
to s and ξ and are, on their own, determined completely by the corresponding singularity
structures ofω̃(ξ) and the integrations present in (A.11) and (A.12) (see appendix A). These
integrations can give rise to singularities due to the following two mechanisms [13]:

(1) moving singularity of the integrand approaches a fixed limit of the integration or, inversely,
a moving limit of an integration approaches a fixed singularity of the integrand (so-called
endpoint (EP) singularities);

(2) moving singularity of the integrand approaches some another singularity pinching
unavoidably in that way the integration contour (so-called pinch (P) singularities).

In the convolution integrals of formula (A.11) only the functionsω̃(ξ) and�(ξ) can give
rise to both the (EP and P) singularity mechanisms since a dependence of the integrals on the
remaining partners of the convolutions are holomorphic.

From the defining formulae (A.12) and from theξ -Riemann surface structure on which
ω̃(ξ) and�(ξ) are defined (this structure was sketched in the previous section) it follows
also that even for the simplest cases of first few8̃(q)1 (ξ, s) their global(ξ, s)-Riemann surface
structures are too complicated to be fully handled and only some crude descriptions of them
are possible, limited to a few first sheets and a few singularities.

However, in making the corresponding analysis by limiting ourselves to the first fewq

we are free in deforming the integration contours in (A.12), i.e. the limitation ofγ̃1(ξ) to
the canonical choices is no longer valid. This observation is very important and proves that
the Borel functionχ̃1(ξ, s) constructed initially for the fundamental solution of sectorS1 is
universal, i.e. each Borel summable solution to the Schrödinger equation (2.1) can be obtained
by the Borel transformation of̃χ1(ξ, s) with a properly chosen integration path in the Borel
plane. A discussion of the latter property of the Borel summable solutions and some of its
consequences is postponed, however, to another paper [3].
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Figure 4. The ξ -plane singularities corresponding to
8̃
(1)
1 (ξ, s) (caseq = 1).

Figure 5. The s-plane singularities corresponding to
8̃
(1)
1 (ξ, s) (caseq = 1).

Having in mind the incredible (in general) complexity of the(ξ, s)-Riemann surface
structure of8̃1(ξ, s) we shall describe first a general procedure for getting this structure for
the first few8̃(q)

1 (ξ, s), also taking into account a few singularities ofω̃(ξ) and�(ξ), and then
we try to give as full a description as possible of such structures for the linear and harmonic
potentials.

q = 0. It is seen from (A.12) that̃8(0)
1 (ξ, s) is an entire function ofs for anyξ not coinciding

with singularities ofω̃(ξ). Its singularities in theξ -variable therefore coincide with those of
�(ξ) and consequently with those ofω̃(ξ) as the EP singularities shown in figure 3.

q = 1. This is the Riemann surface structure of8̃
(q)

1 (ξ, s) as defined by (A.12) forq = 1.

8̃
(1)
1 (ξ, s) =

∫
C̃(s)

dηω̃(ξ − η)(2s − 2η)
I1([8(s − η)�(ξ − η)− 4(s − η)�(ξ)] 1

2 )

[8(s − η)�(ξ − η)− 4(s − η)�(ξ)] 1
2

. (4.1)

It follows from (4.1) that singularities of the subintegral function are essential singularities
coniciding with the branch points of�(ξ) and�(ξ − η). Because of the singleη-integration
in (4.1) only the EP mechanism can generate singularities in the ‘s-plane’ since all theη-
singularities are moving ones (depending linearly onξ ) so that the positions of all the (essential)
singularities of8̃(1)

1 (ξ, s) coincide again with those of�(ξ − s) and�(ξ). Therefore, these
positions on theξ, s Riemann surface are the following:

ξ = ζk ξ − s = ζk k = 1, 2, . . . . (4.2)

The nature of all these singularities is not altered by the integrations, i.e. all they are branch
points. The resulting pattern of cuts on the corresponding Riemann surface which follows from
figure 3 is sketched in figures 4 and 5.

In obtaining the pattern of the last figures we have utilized only the singularity structure
of thefirst sheet of figure 3. Then the corresponding pattern of thefirst sheet structure of the
productω(ξ)�(ξ − η) (and similar products typical for the subintegral function in (4.1)) has
to have the form of figure 4 (where thes variable should be substituted by theη one), i.e. the
sheet of figure 4 is the common loci of the branch point singularities ofω(ξ) and�(ξ − η).
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The same principles are used in constructing the singularity structures of the corresponding
first sheets for the caseq = 1 considered below.

q = 2. This is the Riemann surface structure of8̃
(2)
1 (ξ, s) as defined by (A.11) forq = 2.

From (A.14) we have

8̃
(2)
1 (ξ, s) =

∫
C̃(s)

dη
∫
γ̃ (ξ)

dξ1ω̃(ξ1− η)ω̃(ξ1)(2s − 2η)2
I2(z

1
2 )

z

z = 4(s − η)(�(ξ)− 2�(ξ1) + 2�(ξ1− η)).
(4.3)

Note that theξ -integration in (4.3) runs across a sheet of theξ -Riemann surface shown in
figure 4 (where thes variable is to be substituted by theη one). However, contrary to the close
correspondence between the distributions of sectors and turning points on the Stokes graph of
figure 1 and of sheets and the corresponding cuts on figure 3, such a correspondence is lost in
the case of figure 4, i.e. we are left only with some properly arranged system of branch points
and cuts.

Since half of the cuts in figure 4 are moving (mind the substitutions → η) then as well as
of the EP singularities, the P singularities are also generated by both theξ - andη-integrations
in (4.3).

Consider first results of theξ -integration in (4.3).
The EP singularities which follow from this integration coincide (with the corresponding

substitutions by η) with those in figures 4 and 5 and are given again by (4.2).
A generation of P singularities can be performed by moving singularities depending onη

(see figure 4). For example, moving clockwise the singularityη + ζ1 around the EPξ of γ̃1(ξ)

and next pinching̃γ1(ξ) againstζ1 we generate a singularity of (4.3) atη = 0 in theη-Riemann
surface. It is placed, however, on another sheet of the surface since to achieve it we had to go
around the branch point singularityξ − ζ1, shown in figure 5, in the clockwise direction.

To obtain all otherη-plane singularities generated by theξ -integration in (4.3) we proceed
in the same way. All these singularities lie on sheets which can be reached by going around the
two branch points (in any direction—clockwise or anticlockwise) shown in figure 5. Therefore,
all these singularities are shared by the actual positions of the branch points cuts of figure 5.
They can become visible by cutting theη-plane in a different way or by moving appropriately
both the branch points to the left.

Choosing, for example, the last possibility and movingξ toward the sectorS3 we arrive at
the situation shown in figure 6. Ifξ andη are moved so that Reξ < Reζ2 = Re(η+ ζ1) then a
further motion ofη + ζ1 upwards to the pointζ2 pinches the path̃γ1(ξ), producing in that way
a singularity atη = ζ21 ≡ ζ2 − ζ1. It lies to the right from the cut atξ − ζ1 in the ’η-plane’
and is therefore screened by the cut just mentioned when Reξ > Reζ2 (see figure 7).

By identical analyses applied to each pairη− ζi , ζj of the singularities lying on the sheet
in figure 4, the singularities ats = ζij or ats = ζji = −ζij can be produced, being screened
by cuts ats = ξ − ζj or ats = ξ − ζi , correspondingly. All the singularities produced in this
way are branch points.

According to (4.3) the second, final integration is performed over theη-plane providing
8̃
(2)
1 (ξ, s) with all its ξ - and s-plane singularities. This integration transforms all theη-

singularities obtained by the first (ξ -)integration into the correspondings-ones (by the EP
mechanism) and provides us with additionalξ -singularities by the pinch mechanism. Pinching,
for example, the singularityξ − ζ2 againstζ21 we obtain theξ -singularity atξ = ζ2 + ζ21 lying
on a sheet of theξ -Riemann surface originated by the branch point atζ2 on figure 4. This
branch point is screened, of course, by the cut atξ = s + ζ2 when Res > Reζij (see figure 8).
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Figure 9. The Stokes graph for the linear potential.

Therefore, figures 7 and 8 show the complete singularity structure of8̃
(2)
1 (ξ, s)when continued

in ξ in the way shown in figure 6.

4.1. The analytic structure of the Borel function for the linear potential

We can put for this caseq(x,E) ≡ x andξ = x3/2 with the corresponding Stokes graph shown
in figure 9, and we shall consider8̃1(ξ, s) as the Borel function defined by the fundamental
solution91(x, λ).

At first glance the corresponding analysis seems to be simple because of the simplicity of
the relevant functions̃ω(ξ) = − 5

16
1
ξ2 and�(ξ) = 5

16
1
ξ

as a result of which the three-sheeted
Riemann surface branching atξ = 0 (the surface being the image of the two-sheetedx-plane
by the transformationξ = x3/2) decouples into three independent sheets. The unity of the
surface is recovered, however, by the solution91(x, λ), which being holomorphic atx = 0
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branches at this point asξ2/3 when considered as a function ofξ . However, since we are
interested in the properties of the Borel function8̃1(ξ, s) determined rather byχ1(ξ, λ)/2λ it
is the (ξ, λ)-dependence of the latter function which is most important.

The latter dependence can be established to some extent, noting that the beginning of the
integration path̃γ (ξ) in χ1(ξ, λ)will come back to the infinity of the first sector if the solution

9(ξ, λ) = ξ−
1
6 e−λξχ1(ξ, λ) is continued analytically in theλ-plane by rotatingλ by the angle

±6π . Of course, the deformed path̃γ (ξ) ends eventually at the pointξ surrounding the latter
twice (in the direction suitable to the sign). Naturally, this is exactly the process of analytical
continuation described in section 2.

However, as is seen from figure 9, the aboveλ-continuation ofχ1(ξ, λ) is equivalent to
its continuation to the same pointξ along thedeformedpath γ̃ (ξ) starting from its initial
canonical form. Since by this latter continuation the argument ofξ also changes by±6π then
the factorξ−

1
6 of 9(ξ, λ) acquires minus by this continuation and so does the factorχ1(ξ, λ)

since by this continuation9(ξ, λ) cannot change because it branches atξ = 0 asξ2/3. It
therefore follows thatχ1(ξ, λ) branches atξ = 0 asξ1/6.

From the latter observation it follows directly that the Borel function8̃1(ξ, s)(≡ χ̃1(ξ, s))

branches at the infinity point of itss-plane also ass1/6. This can be seen from the fact that
to recover the factorχ1(ξ, λ) by the Borel transformation of̃81(ξ, s) we have to successively
change the integration path in the transformation from the negative real half-axis to the positive
one (and vice versa), depending on which sector the infinite end of the deformed pathγ̃ (ξ)

is actually in. These Borel transformation paths are, again, the deformations of each other
obtained by moving the infinite end of them along the circle of infinite radius, i.e. all the
singularities of8̃1(ξ, s) are avoided by these deformations. Since after six such changes the
Borel transformation of̃81(ξ, s) has to change its sign in comparison with its initial value, so
8̃1(ξ, s) itself has to do so also.

Therefore, we conclude that for fixedξ thes-Riemann surface of̃81(ξ, s) is comprised
of six sheets.

The above situation is, however, not so simple when formulae (A.12)–(A.14) defining
8̃1(ξ, s) are considered. The Bessel functions in these formulae convert the simple pole of
�(ξ) at ξ = 0 into a corresponding root (of the fourth order) branch points accompanied
by essential singularities (see appendix C). Also the successiveξ - andη-integrations in these
formulae have to generate unavoidably the branch points atξ = 0, s = 0 andξ = s of the
logarithmitic type. This is, of course, because the representation of8̃1(ξ, s) given by (A.12)–
(A.14) is singular providing us with the correct positions of singularities but not necessarily
with their nature. The above example of the linear oscillator shows that the proper behaviour
of 8̃1(ξ, s) close to its singularities is obtained only by the full resummation of these series.
Nevertheless, in more complicated cases of potentials, information the series provide us with
is certainly very useful, as in the case just considered.

Taking into account the recurrent relations (A.14) we can establish inductively that
8̃1(ξ, s) being defined by the series (A.11) on its infinitely sheeted (ξ, s)-Riemann surface
has on its first two sheets singularities shown in figures 10(a) and (b) (see appendix C for
details). The points = 0 on the sheet of figure 10(b) is regular for8̃1(ξ, s), according to the
general results of appendix A. According to this analysis the pointsξ − s = 0 are the four
order branch points of̃81(ξ, s) and simultaneously its essential singularities but we should
have in mind that the last two properties can be incorrect.

The same property concerns the pointsξ = 0 ands = 0, the latter being on the second
and further sheets of figure 10(b). All these points arrange themselves in the considered
approximation of the8̃1(ξ, s) infinitely sheeted Riemann surface. However, even for this
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Figure 10. Theξ - ands-plane singularities corresponding to8̃(0)1 (ξ, s).

simple case, the topology of the surface (apart from its first two sheets) is too complicated to
be fully described.

Nevertheless, one general conclusion valid for all the polynomial potentials can be drawn
from the above consideration. Namely, if for a general polynomial potential we consider any
pair of neighbour sectors joined by the analytic continuation inλ whenλ → e±iπλ and we
continue a fundamental solution defined in one of the sectors to the second along the canonical
path then the corresponding ‘s-plane’ singularity structure of the first sheet of the respective
Borel function8̃1(ξ, s) is exactly the same as for the ‘simplest’ case of the linear potential
described above.

4.2. An alternative non-standard Borel representation for the linear potential wavefunction

In the previous section we noted with disappointment that even in such a simple case as the
linear potential, the corresponding Borel function properties which follow from the topological
expansion are quite complicated. We have, however, also shown that the actual structure of
the linear potential Borel plane should be rather simple. Below, we want to show that this
complication is apparent and that a slight change to the definition of the Borel function can
greatly simplify the properties for the case considered. Let us replace the definition (2.7) of
the Borel function by

χ̃alt
1 (ξ, σ ) =

∑
n>0

(−σ)n+ 1
2

0(n + 3
2)
κ1,n(ξ) (4.4)

which corresponds to the following representation ofχ̃alt
1 (ξ, σ ) by the Laplace transformation:

χ̃alt
1 (ξ, σ ) =

1

π i

∫ +i∞+λ0

−i∞+λ0

e−2λσ χ1(ξ, λ)

(2λ)
3
2

dλ

0< λ0 < 1 σ < 0
(4.5)

so that the inverse Borel transformation is given by

χ1(ξ, λ) = (2λ) 3
2

∫ 0

−∞
e2λσ χ̃alt

1 (ξ, σ )dσ. (4.6)

Let us now make use of the fact that the fundamental solution91(x, λ) can be given the
following integral representation (see [31], mathematical appendix):

91(x, λ) = i√
π
(2λ)

1
2

∫
C

eλ(xy−
y3

3 ) dy (4.7)
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where we putx real and positive and the contourC is shown in figure 9.
Changing the integration variabley in (4.7) into x−1/4y and putting 2σ = x3/4y −

x−3/4y3/3 + 2x2/3/3 we can bring the integral to the following form:

91(x, λ) = x− 1
4 e−

2
3λx

3
2

√
3

π
(2λ)

3
2

∫ 0

−∞
e2λσ

[(
− 3

(
σ − 1

3
x

3
2

)
x

3
4 + 3x

3
4

√
σ

(
σ − 2

3
x

3
2

))1
3

−
(
− 3

(
σ − 1

3
x

3
2

)
x

3
4 − 3x

3
4

√
σ

(
σ − 2

3
x

3
2

))1
3
]

dσ. (4.8)

Hence forχ̃alt
1 (ξ, σ ) we get finally

χ̃alt
1 (ξ, σ ) =

√
3

π

[(
− 3

(
σ − 1

2
ξ

)(
3

2
ξ

)1
2

+ 3

(
3

2
ξ

)1
2√
σ(σ − ξ)

)1
3

−
(
− 3

(
σ − 1

2
ξ

)(
3

2
ξ

)1
2

− 3

(
3

2
ξ

)1
2√
σ(σ − ξ)

)1
3
]
. (4.9)

It follows from (4.9) thatχ̃alt
1 (ξ, σ ) is defined on thetwo-sheeted Riemann surface having

the branch pointsσ = 0 andσ = ξ as its unique singularities.
The non-standard representation (4.5), (4.6) of the Borel function considered above shows

that the complicated form (2.7) of the standard one depends on the representation itself and it
can be simplified greatly by the proper choice of such a representation.

4.3. The singularity structure of the Borel function for the harmonic oscillator

Making, if necessary, a suitable rescaling we can put in this caseq(x) = x2 + 1 (assuming
the energy to be negative). The corresponding Stokes graph is then shown in figure 11 and
we choose as usual the sectorS1 to provide us with the fundamental solution91(x, λ) and
its Borel function8̃1(ξ, s). Because of the last conclusion of section 4.1 we consider now a
case of the Riemann surface structure corresponding to8̃1(ξ, s)whenξ(≡ ∫ x−i √y2 + 1 dy) is

continued to sectorS3 of figure 11 (along a canonical path). The first sheets of8̃
(1)
1 (ξ, s) and

8̃
(2)
1 (ξ, s) are shown in figures 12 and 13 respectively.

Again using (A.14) we can show inductively that the first sheets of8̃
(2q)
1 (ξ, s) and

8̃
(2q+1)
1 (ξ, s) are as in figures 14 and 15. All the detailed considerations establishing this

can be found in appendix C.2.

4.4. Borel plane structure of harmonic oscillator Joos function

When, in the consideration of the previous section, we push Reξ to minus infinity (this
corresponds to pushx to the infinite point∞3 of sectorS3 of figure 11) then we get the
‘Borel plane’ singularity structure of the so-called Joos function for the harmonic oscillator.
This is the name given to the coefficientχ1→3(λ) ≡ limξ→∞3 χ1(ξ, λ) [19] such that the energy
spectrum of the harmonic oscillator is given byχ1→3(λ) = 0. Note that in the limitξ →∞3

all the functions8̃(2q+1)
1 (ξ, s) vanish so that the corresponding limiting functions8̃(2q)

1→3(s)

contribute only toχ̃1→3(s).
As follows from the considerations of the previous section, the singularity structure of

the latter function is determined by the branch points distributed along the imaginary axes
of the s-Riemann surface. This distribution can be described completely, if instead of the
Borel function χ̃1→3(s), we consider the one corresponding to logχ1→3(λ). To this end
let us note that, as follows from figure 11(a) the normal sector ofχ1→3(λ) (i.e. the one
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Figure 12. The ‘first sheets’ singularities of̃8(1)1 (ξ, s) for the harmonic potential.

whereχ1→3(λ) is holomorphic and can be expanded into the semiclassical series (2.5))
is defined by| argλ| < π . One can easily find also (by analytic continuation inλ)
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Figure 14. The ‘first sheets’ singularities of̃8(2q)1 (ξ, s) for the harmonic potential.

that

χσ2→4(λ) = χ1→3(λeiσπ ) 0< | argλ| < π (4.10)

whereσ = argλ/| argλ| andχ∓2→4(λ) are the canonical coefficients corresponding to the
graphs of figure 11(b) and (c) respectively. Despite (4.10), these two canonical coefficients
obey the following two other relations:

χ1→3(λ)χ
−
2→4(λ) = 1 + eπ iλ 0< argλ < π

χ1→3(λ)χ
+
2→4(λ) = 1 + e−π iλ − π < argλ < 0

(4.11)

in which the fact that 2
∫ i
−i
√
y2 + 1dy = π i has been used.

The relations (4.11) follow as a result of an identity which the four fundamental solutions
9k, k = 1, . . . ,4, corresponding to the Stokes graphs of figure 11 have to satisfy since only
two of them can be linearly independent.

Using (4.10) we get from (4.11)

χ1→3(λ)χ1→3(λe−iσπ ) = 1 + eπ iσλ (4.12)
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Figure 15. The ‘first sheets’ singularity structure of8̃(2q+1)
1 (ξ, s) for the harmonic potential.

whereσ = argλ/| argλ| and 0< | argλ| < π .
Formula (2.6) can now be used directly to define the Laplace transformχ̃1→3(s) of the

Joos functionχ1→3(λ)with the integration contourC13 running around the negative half of the
real axis of theλ-plane. In this wayχ̃1→3(s) is defined by (2.6) as the holomorphic function
in the half-plane Res < 0.

The analytic structure ofχ̃1→3(s) can, however, be best handled if we consider
log∗ χ̃1→3(s) rather than the function itself [19]. Thus, we have

log∗ χ̃1→3(s) = 1

2π i

∫
C13

e−2λs logχ1→3(λ) dλ (4.13)

and we can use (4.12) to calculate (4.13) exactly. (Note thatχ1→3(λ) does not vanish in the
λ-plane cut along the negative half of the real axis.) Using (4.12) we have

log∗ χ̃1→3(s) = 1

2π i

∫
Cu(λ0)

e−2λs log(1 + eπ iλ) dλ +
1

2π i

∫
Cd(λ0)

e−2λs log(1 + e−π iλ) dλ

+
1

2π i

∫
C13(λ0)

e−2λs logχ1→3(−λ) dλ (4.14)

whereC13(λ) is one of the contoursC13 crossing the real axis atλ0 > 0 andCu(λ0), Cd(λ0)

are parts of it lying above and below of the real axis correspondingly.
Performing the integrations in the first two integrals in (4.14) (by expanding the logarithms)

and changingλ into−λ in the third one we get

log∗ χ̃1→3(s) = 1

4π i

∑
n61

(−1)n+1

n

{
eπ inλ0

s − iπn
2

− e−2π inλ0

s + iπn
2

}
e−2λ0s

+
1

2π i

∫
C ′(λ0)

e2λs logχ1→3(λ) dλ (4.15)

whereC ′(λ0) is the contour encircling (anticlockwise) the pointλ = 0 and starting and ending
at the pointλ = −λ0 of the real axis. Since the right-hand side of (4.15) is independent ofλ0,
it can be calculated atλ0 → 0. It can be shown (see appendix E) that the integral in (4.15)
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vanishes in this limit and therefore we finally get

log∗ χ̃1→3(s) = 1

2

∑
n>1

(−1)n+1

s2 + n2π2

4

= 1

2is

(
1

2is
− 1

sin(2is)

)
. (4.16)

The result (4.16) was essentially established by Voros [19] but here it is obtained directly
by the definition (4.13) of the Laplace transform for logχ1→3(λ). The inverse transformation
can also be performed to give the known expression forχ1→3(λ) [19].

Summarizing, one can see that despite the clear way of obtaining corresponding singularity
patterns and the underlying structures of the Riemann surfaces they both still become more
and more complicated with increasingq. The following main observations follow, however,
from the analysis:

(1) The set6q+1 of singularities corresponding tõ8(q+1)
1 (ξ, s) contains the set6q of these

corresponding tõ8(q)

1 (ξ, s).
(2) The new singularities which belong to6q+1 \ 6q are generated on the sheets originated

by the singularities ofSq ; the latter is true both on theξ - and on thes-planes.

The following comment concerning the positions of the singularities themselves and their
relation to the Feynman path integral is in order. From the above discussion it is seen that
these positions are determined by the values of the classical action the latter takes on along
suitable classical paths corresponding to the case considered. The paths are real as well as
complex (i.e. they are real or complex solutions to the classical equation of motion). They
contribute to calculated quantities8̃(q)

1 (ξ, s), q > 0 in the hierarchical way described above so
that a path with greater absolute value of the real part of the corresponding action contributes
to the later term8̃(q)

1 (ξ, s) of the topological expansion. In this way the latter expansion
reflects its close relation to the semiclassical expansion based on the Feynman path integral
and the saddle-point technique as well as confirming the role of complex classical paths in
such calculations [15–18].

5. An application: the connection problem

The connection problem is an old problem of the JWKB theory which in the context of the
Balian–Bloch representation was considered first by Voros [19]. We shall discuss this problem
within the framework of our formalism to show the equivalence of the solution it provides with
the corresponding method used in our earlier papers (see, for example, [12,22,29]).

The main question is how the JWKB formula, being a good approximation to a given
solution in some domain of thex-plane, should be changed (in order to still remain a good
approximation of the solution) when the solution is continued analytically to another domain
of thex-plane. The problem can be solved in many different ways depending on the type of
the considered solutions (see, for example, [20–22,29]). In particular, it can be solved with the
aid of fundamental solutions (see [12] for the relevant procedure in an application to matrix
element evaluations in JWKB approximation).

In the framework of the Balian–Bloch representation the solution of the problem is the
following. Consider the fundamental solution to (2.1) given by (2.2)–(2.4) and continued
along a pathγ ′′1 to the sectorS2 (see figure 2). As follows from the previous section’s analysis,
continuing analytically along the considered path we cannot meet singularities above the
corresponding path̃γ1(ξ) in the ξ -plane and, therefore, the singularity pattern ofχ̃1(ξ, s)

in thes-plane is as in figure 16(a), i.e. there are only two cuts on the relevant sheet. Since the
integration alongC̃ is limited only to lie in the left half-plane we can deform it freely in this



1562 S Giller

ξ−ζ

ξ−ζ

ξ−ζ
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ξ−ζ

ξ−ζ

ξ−ζ

ξ−ζ

Figure 16. The Borel plane singularities corresponding toχ̃−1 (ξ, s).

half-plane to the positioñC3, for example (see figure 16(c)). But doing this we have to also
integrate along the cuts, starting at the pointss = ξ − ζ1 ands = ξ − ζ1, respectively. Thus,
ψ1(ξ, λ) is represented in this way as the following sum:

ψ1(ξ, λ) = 2q−
1
4 (ξ)e−λξ

∫
C̃

e2λsχ̃1(ξ, s)ds

= 2q−
1
4 (ξ)e−λξ

(∫
C̃1

+
∫
C̃2

+
∫
C̃3

)
e2λsχ̃1(ξ, s)ds (5.1)

whereξ = ∫ x
x1
q

1
2 dy. It should be noted that each term of the sum in (5.1) is a solution to the

Schr̈odinger equation (2.1) (see, for example, [3]). It is also not difficult to see that each of
the solutions generated by the integrations alongC̃1 andC̃2 is proportional to the fundamental
solution defined in the sectorS2 of figure 2, whilst the remaining third solution generated by
the integration along̃C3—to ψ3(ξ, λ)—is the fundamental solution defined in the sectorS3.
(An easy way to establish these facts is to investigate the behaviour of these solutions when
ξ goes to∞2 and∞3 correspondingly (∞k being the infinity point in sectork).) In this way
a linear combination of the fundamental solutionsψ2 andψ3 to form the solutionψ1(ξ, λ) is
realized simply by moving the contour̃C in thes-plane.
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The connection problem arises whenψ1(ξ, λ) is continued to sectorS3 by crossing sector
S2, i.e. along some noncanonical pathγ ′′1 in figure 2. At the end of such a continuation the
dominant character of the JWKB factorq−1/4 exp(−λξ) is lost in favour of the amplitude factor
χ1(ξ, λ) but the series (2.3) does not then give an easy answer to what actually happens when
Reξ →∞ along such a path. (In factχ1(ξ, λ) then behaves as exp(2λξ).)

In the s-plane the analytic continuation just described results in a deformation of the
contourC̃ to the form shown in figure 16(d) (dashed curve). It follows obviously from the
figure that the dominant contribution toψ1(ξ, λ) now comes from the integration along̃C2,
i.e. from the solution proportional toψ2(ξ, λ), and this is the way by which the connection
problem is solved within the framework of the Balian–Bloch representation. (Note that both
the solutions defined by the integrations alongC̃1 andC̃3 are subdominant whenλ→∞ and
ξ stays in the sectorS3 or when Reξ →∞3 andλ is fixed.)

It is easy to see, further, that the linear combination in the rhs of (5.1) can be explicitly
reconstructed with the aid of the canonical coefficientsαi/j→k (αi/j→k = limx→∞k

ψi (x)

ψj (x)
,

see [2]) as follows:

ψ1(ξ, λ) = α1/2→pψ2(ξ, λ) + α1/p→2ψp(ξ, λ)

= α1/2→pψ2(ξ, λ) + α1/p→2αp/2→3ψ2(ξ, λ) + α1/p→2αp/3→2ψ3(ξ, λ) (5.2)

wherep = n + 2 and where the sequence of terms of the last sum in (5.2) corresponds strictly
to the sequence of integrations alongC̃1, C̃2 and C̃3 in (5.1). The first linear combination
appears in (5.2) when the contourC̃1 is deformed to the positioñCp shown in figure16(b).

It is also worthwhile to note that the formula (5.2) giving us the continuation ofψ1(ξ, λ)

to sectorS3 along the noncanonical pathγ ′′1 can be also used to obtain in a simple way the
improved connection formula of Silverstone [22] (see also the recent work of Fröman and
Fröman [29]) withψ3 playing the role of the subdominant contribution. It is enough to this
end to substitute each term in the sums in (5.2) by its corresponding JWKB approximation
(i.e. none of the cumbersome Borel resummation used by Silverstone is necessary).

6. Exponential asymptotics

The problem of the semiclassical expansions for physical quantities is strictly related to the
problem of so-called exponentially small contributions absent (by definition) when only the
bare semiclassical expansions of these quantities are considered [23,25–28]. The exponentially
small contributions become important if the accuracy of the best semiclassical approximation is
considered to be insufficient. There are, however, two aspects of this problem which, according
to our knowledge, have not been discussed properly.

The first arises when the corresponding semiclassical series if Borel summed does not
correctly reproduce the quantity considered even if it is known that the latterisBorel summable.
This can happen if the integration path in the Borel plane has been chosen incorrectly.

In fact, there are many such non-homotopic paths in the Borel plane along which a given
semiclassical series can be summed. Examples of such different path resummations were
given in the previous section (see also [3] for the corresponding discussion). Discrepancies
between results of any two of such different path Borel resummations have to be, of course,
exponentially small, not contributing to the same semiclassical limit.

In such a case of an incorrectly chosen path, it is enough to find the correct one to reproduce
the considered quantity completely, i.e. the corresponding Borel integral then includesall the
exponentially small contributions.

The second aspect appears when the conditions of the first one are satisfied, i.e. when the
Borel transform reproducescompletelythe quantity considered and the semiclassical series is
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then used as a source of the best approximation to the Borel integral. As is well known (see,
for example, [30]), the latter approximation is obtained in this case by abbreviating the series
on its least term (since the series is divergent), the order of which is proportional to the actual
value ofλ(h̄−1) (in factn should be equal to the integer part ofλ|s0|wheres0 is a singularity of
the Borel function closest to the origin). The remainder (i.e. the difference between the Borel
integral and its approximation) is then an exponentially small quantity.

To improve this approximation still using the semiclassical tools, we have to be able to
identify the exponential factor of the remainder and to multiply the last factor again by some
optimal abbreviation of a new semiclassical expansion of the remainder. Next, we should be
able to repeat this procedure to the remainder of the remainder, constructing in this way a more
and more accurate semiclassical approximation which includes as many exponentially small
contributions as we need to make the approximation as good as we wish. One way to solve
this problem has been proposed by Berry and Howls [23] and in a more systematic way by
Daalhuis [24]. Our solution to the above problem is formulated in appendix D. According to the
beginning of this discussion the exponentially small contributions obtained in this way should
be determined by the singularity structure of the corresponding Borel functions, provided, for
example, by the topological expansions. In appendix D we show how to get these results.

7. Exponential asymptotics of energy levels

Using the approximation scheme which follows obviously from the topological expansion
and from the results of appendix D we shall determine in this section the way of obtaining
the semiclassical exponential asymptotic for energy levels of the anharmonic osciallator
corresponding to the potentialV (x) = x2 + x4 with the Stokes graph shown in figure 17
and drawn forE > 0. Taking into account the symmetry of the potential we can write the
quantization condition for the energy levels in the form

exp

(
λ

2

∮
K

√
V (x)− E±(λ) dx ± i

π

2

)
= χ1→3(E

±(λ), λ) (7.1)

where the contourK is shown in figure 17 and± in (7.1) correspond to the even and
odd parities of the levels respectively. (The condition (7.1) is obtained by noting that
the fundamental solution94(x, E, λ) can bedefinedas94(x, E, λ) = ±i91(−x,E, λ),
x ∈ S4, Im x = ±|Im x|, (the factor± ensures that94(x, E, λ) is real for realx) and that
94(x, E, λ) = 91(x, E, λ) is then a quantization condition for energy levels. If we next
continue the latter equation to the infinity of the sectorS3 we get (7.1).)

Making the complex conjugation of both the sides of (7.1) we get an alternative condition
for the energy level quantization. Both versions are important since they determine the normal
sector ofE(λ) to be 0< | argλ| < 3π/2 for λ sufficiently large [2]. Because of this the
semiclassical series ofE(λ) is, as we have shown in our earlier paper [2] (see also [5–8,23]),
Borel summable toE(λ) itself and the singularity structure of̃E(s) on its Borel plane is also
determined by (7.1) and its complex conjugation. It follows from (7.1) that this structure is
symmetric with respect to the real axis of thes-plane andE(λ) can be recovered by integrating
Ẽ(s) along the negative half-axis. Of course, to apply to the last integral the procedure of
appendix D we have to know a detailed distribution of singularities ofẼ(s) on its Borel plane.
But instead of this we can use (7.1) directly to establish the respective exponentially small
contributions toE(λ). Ordering these contributions according to their exponential smallness
we can treat each such contribution as a correction to its predecessors and use the Taylor series
expansion to take into account the corresponding contribution. So we can write

E(λ) = E0(λ) +E1(λ) . . . (7.2)
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γ

Figure 17. The Stokes graph for the harmonic potential
V (x) = x2 + x4 for E > 0.

whereE0(λ) is constructed in the standard way, being given as a finite sum arising by the
abbreviation at its least term the corresponding semiclassical series forE(λ) (see [11]) and,
therefore, being polynomially dependent onλ−1 whilst further contributionsE1(λ),E2(λ), . . . ,

in (7.2) are each exponentially smaller than their predecessors.
Of course,E0(λ) for a givenλ, has some well defined numerical value around which the

corresponding Taylor series expansion ofχ1→3(E(λ), λ) can be performed. Thus, we have

χ1→3(E(λ), λ) = χ1→3(E0(λ), λ) +
∂χ1→3(E0(λ), λ)

∂E
(E1(λ) +E2(λ) + · · ·) + · · · . (7.3)

Since the quantities in (7.2) are real we write the corresponding quantization condition in
its real form, too, to get

sin

(
λ

2i

∮
K

√
V (x)− E±0 (λ) dx − λ

4i
(E±1 (λ) +E±2 (λ) + · · ·)

∮
K

dx√
V (x)− E±0 (λ)

+ · · ·
)

= ∓ Re

(
χ1→3(E

±(λ), λ) + (E±1 (λ) +E±2 (λ) + · · ·)

×∂χ1→3(E
±
0 (λ), λ)

∂E
+ · · ·

)
. (7.4)

It is now clear that we can apply to the coefficientχ1→3(E0(λ), λ) and its derivatives the
procedure of appendix D consideringE0(λ) as having well defined value so that the singularity
structure of the corresponding Borel functionχ̃1→3(E, s) is determined just by the value ofE
equal toE0(λ).

Assuming the exponential asymptotics forχ1→3(E0(λ), λ) to be ordered in a way
analogous to (7.2), we get for the first two terms of (7.2)

sin

(
λ

2i

∮
K

√
V (x)− E±0 (λ) dx

)
= ∓Re(χ(0)1→3(E

±
0 (λ), λ)) (7.5)

and

E±1 (λ) =
±Re(χ(1)1→3(E

±
0 (λ), λ))

λ
4i

∮
K

dx√
V (x)−E±0 (λ)

cos( λ2i

∮
K

√
V (x)− E±0 (λ) dx)∓ Re( ∂χ

(0)
1→3(E

±
0 (λ),λ)

∂E
)

(7.6)

whereχ(0)1→3(E0(λ), λ) (we shall suppress the parity indices as unimportant for our further
considerations) is given by the respective number of the first terms of the series (2.5) (i.e.
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abbreviated at its corresponding least term; note also that the integrations in (2.5) go from
∞1 to∞3 along the canonical path) whilst the exponential contributionχ

(1)
1→3(E0(λ), λ) is

determined according to appendix D by the singularities ofχ̃1→3(E0(λ), s) in its Borel plane
closest to the origin.

Applying the approximations following from the topological expansion (A.11) for
χ̃1→3(E0(λ), s) we can write (keeping only the first two terms of this expansion)

χ̃1→3(E0(λ), s) = 8̃(0)
1→3(E0(λ), s) + 8̃(2)

1→3(E0(λ), s) (7.7)

where

8̃
(0)
1→3(E0(λ), s) = I0

(√
4s
∫ ∞3

∞1

ω̃(ξ, E0(λ)) dξ

)

8̃
(2)
1→3(E0(λ, s)) =

∫ 0

s

dη
∫ ∞3

∞1

dξω̃(ξ + η,E0(λ))ω̃(ξ, E0(λ))
I2(
√
z)

z
(7.8)

z = 4(s − η)
∫ ∞3

∞1

ω̃(ζ, E0(λ)) dζ + 8(s − η)
(∫ ξ

∞1

−
∫ ξ+η

∞1

)
ω̃(ζ, E0(λ)) dζ.

Assuming the same order of approximation forχ1(x, E0(λ), λ) we can see that whenx
stays in sectorS3 as shown in figure 18(a) then its Borel plane looks as in figure 18(b) in
which C1 is the path of the Borel integration to recoverχ1(x, E0(λ), λ). The distribution
of the singularities on the figure now follows from (7.7). Figure 18(c) shows the
Borel plane for χ̃1→3(E0(λ), s), i.e. whenx → ∞3. The singular points areζC =∫ C(E0(λ))

B(E0(λ))

√
V (x)− E0(λ) dx, −ζC , ζC − ζA =

∫ C(E0(λ))

A(E0(λ))

√
V (x)− E0(λ) dx and ζA − ζC .

Therefore,χ1→3(E0(λ), λ) can be given as

χ1→3(E0(λ), λ) = 2λ
∫
C

e2λsχ̃1→3(E0(λ), s)ds (7.9)

where the integration pathC is as shown in figure 18(c).
The pathC differs from the one considered in appendix D but this does not prevent us

applying the procedure of this appendix. Therefore, according to the approximation (7.7) we
have

χ1→3(E0(λ), λ) = 2λ
∫
C

e2λs(8̃
(0)
1→3(E0(λ), s) + 8̃(2)

1→3(E0(λ), s))ds (7.10)

so that

χ
(0)
1→3(E0(λ), λ) =

n0∑
k=0

(−1)k

(2λ)k
∂k

∂sk
(8̃

(0)
1→3(E0(λ), s) + 8̃(2)

1→3(E0(λ), s))|s=0 (7.11)

wheren0 = [|λζC |].
Using (D.5) and (D.6) of appendix D forχ(1)1→3(E0(λ), λ) we get

χ
(0)
1→3(E0(λ), λ)−

∑
j=C,−C,A−C,C−A

(n0 + 1)!

(2λ)n0ζ n0

n1∑
m=0

(−1)mκ(m)j (E0(λ), 0)

(2λ)m+1
(7.12)

whereζ−C = −ζC , ζA−C = ζA − ζC , ζC−A = ζC − ζA, n1 = [|λζA|] (with |ζA| determining
the common distance of singularities ofκj (E0(λ), s) closest to the origin) andκj are given by

κj (E0(λ), s) = 1

2π i

∫
Kj

dt
8̃
(2)
1→3(E0(λ), ζj + t)

(1 + t
ζj
)n0

× 1

(t + ζj + n0
λ

ln(1 + t
ζj
)− s)(t + ζj + n0

λ
+ n0

λ
ln(1 + t

ζj
)− s) (7.13)

where the contoursKj surround the cuts originated by the singularities of8̃
(2)
1→3(E0(λ), s) at

ζj , each shifted to the origins = 0 of the Borel plane.
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Figure 18. The singularity patterns ofχ1(x, E0(λ), λ)

for the anharmonic oscillator (a) andχ̃1(x, E0(λ), s) (b).
(c) The latter pattern forx(ξ)→∞3.

8. Summary

In this paper we have found the representation for the Borel functions of the quantities relevant
for 1D quantum mechanics. The representation takes the form of the topological expansion.
This expansion provides us with an algorithm determining in a systematic way the singularity
structure of the Borel plane for the relevant quantities and orders the appearing of the Borel plane
singularity structures in a hierarchical way allowing for a formulation of the approximation
scheme of the semiclassical calculations alternative to others [8–12].

We have also noted the limitations of our method in the description of the proper nature
of singularities of the quantities represented by the expansion.

We have formulated the scheme of the semiclassical approximations including the
exponentially small contributions to the desired order of accuracy. It makes use of the Borel
plane singularity structure in the most natural and effective way, particularly if it is accompanied
by the topological expansion method of approximations of the Borel functions.

We have demonstrated the action of both the methods, considering some simple (but not
quite trivial) examples of their applications in sections 4, 5 and 7. However, it was not our
aim in this paper to perform some numerical tests of the method presented. Rather we have
limited ourselves to testing both the methods as theoretical tools for a better understanding of
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the mutual relations between the semiclassical expansions, Borel plane singularity structure
and the exponential asymptotics. For the latter goal both the expansions (i.e. the topological
and the exponential ones) appeared to be very useful. Nevertheless, their test as a practical
method of extended semiclassical approximations is certainly desired.
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Appendix A

A.1. The Laplace transforms̃Y (q)n;r1,...,rq (ξ, s)

We shall determine below the Laplace transformsỸ
(q)

n;r1,...,rq (ξ, s), n > q > 0, as defined
by (3.5). To begin with consider first the caser1 = 0 andq = 1. We have

Y
(1)
n;r (ξ, λ) =

∫
γ̃1(ξ)

dξ1 . . .

∫
γ̃1(ξn−1)

dξnω̃(ξ1) . . . ω̃(ξr ) . . . ω̃(ξn)e
2λ(ξ−ξr )

r = 1, . . . , n n = 1, 2, . . . .
(A.1)

The multiple integral in (A.1) can be rewritten further as follows:

Y
(1)
n;r (ξ, λ) =

∫
γ̃1(ξ)

dξre
2λ(ξ−ξr )ω̃(ξr )�r−1(ξ, ξr)Y

(0)
n−r;(ξr)

r = 1, . . . , n n = 1, 2, . . .
(A.2)

whereY (0)n−r;(ξr) is defined by (3.3) and

�r−1(ξ, ξr) = ((r − 1)!)−1(�(ξ)−�(ξr))r−1. (A.3)

Making in (A.2) a changeξr → ξ − s of the integration variable we get

Y
(1)
n;r (ξ, λ) =

∫
C̃

dse2λs Ỹ
(1)
n;r (ξr )

r = 1, . . . , n n = 1, 2, . . .
(A.4)

where

Ỹ
(1)
n;r (ξ, s) = −ω̃(ξ − s)�r−1(ξ, ξ − s)Y (0)n−r;(ξ − s) (A.5)

and the contour̃C runs from the infinity Res = −∞ to the origins = 0. Note that because
of Reξ > 0 (by assumption) the contour̃C is independent ofr andn and also, as follows
from (A.5), Ỹ (1)n;r (ξ, s) is holomorphic for Res < Reξ .

Reasoning similarly for̃Y (2)n;r1r2(ξ, s) we get

Ỹ
(2)
n;r1r2(ξ, s) = −

∫
γ̃ (ξ−s)

dξ1ω̃(ξ1 + s)ω̃(ξ1)�r1−1(ξ, ξ1 + s)�r2−r1−1(ξ1 + s, ξ1)Y
(0)
n−r2;(ξ1).

(A.6)
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The remaining Laplace transforms̃Y (2q+1)
n;r1...r2q+1

(ξ, s) and Ỹ (2q)n;r1...r2q (ξ, s), q = 1, 2, . . . can
be defined recurrently as follows:

Ỹ
(2q)
n;r1r2r3...r2q (ξ, s) = −

∫
C̃(s)

dη
∫
γ̃ (ξ−s)

dξ1ω̃(ξ1 + s)ω̃(ξ1 + η)�r1−1(ξ, ξ1 + s)

×�r2−r1−1(ξ1 + s, ξ1 + η)Ỹ (2q−2)
n−r2;r3−r2...r2q−r2(ξ1 + η, η)

q = 2, 3, . . .

(A.7)

and

Ỹ
(2q+1)
n;r1r2r3...r2q+1

(ξ, s) = −
∫
C̃(s)

dηω̃(ξ − s + η)�r1−1(ξ, ξ1− s + η)

×Ỹ (2q)n−r1;r2−r1...r2q+1−r1(ξ1− s + η, η) q = 1, 2, . . . . (A.8)

All of them are holomorphic inξ ands for Reξ > 0 and Res < Reξ . The contourC̃(s)
in (A.7), (A.8) starts at the points with Res < Reξ and ends ats = 0.

A.2. Topological expansion

A further step we can do is to fixq and to take sums with respect ton, r1, . . . , r2q . This can be
done as follows. First, we considerχ1(ξ, λ)/(2λ) rather thanχ1(ξ, λ) itself. Next we note that
to each term−(−2λ)−n−1Ỹ

(q)

n;r1...rq (ξ, s) there corresponds the following Laplace transform:

1

n!
sn ∗ Ỹ (q)n;r1...rq (ξ, s) (A.9)

where the star means the convolution of the factors.
The sums we are now looking for are the following:

8̃
(q)

1 (ξ, s) =
∑

16r1<···<rq6n

(−1)r1+r2+···+rq

n!
sn ∗ Ỹ (q)n;r1...rq (ξ, s) (A.10)

so that the series

8̃1(ξ, s) =
∑
q>0

8̃
(q)

1 (ξ, s) (A.11)

(its convergence is discussed below) represents a function8̃1(ξ, s) such that∂8̃1(ξ, s)/∂s is
the Laplace transform ofχ1(ξ, λ).

The sums in (A.10) can be performed explicitly to give

8̃
(0)
1 (ξ, s) = I0

(√
4s�(ξ)

)
8̃
(2q)
1 (ξ, s) =

∫
C̃(s)

dη1

∫
C̃(η1)

dη2 . . .

∫
C̃(ηq−1)

dηq

∫ ξ−η1

∞
dξ1

∫ ξ1

∞
dξ2 . . .

∫ ξq−1

∞
dξq

×ω̃(ξ1 + η1)ω̃(ξ1 + η2) . . . ω̃(ξq + ηq)ω̃(ξq)(2s − 2η1)
2q
I2q(z

1
2
2q)

z
q

2q

z2q = 4(s − η1)�(ξ) + 8(s − η1)

q∑
p=1

(�(ξp + ηp+1)−�(ξq + ηp))

ηq+1 ≡ 0 q = 1, 2, . . . (A.12)

8̃
(2q+1)
1 (ξ, s) =

∫
C̃(s)

dη1 . . .

∫
C̃(ηq )

dηq+1ω̃(ξ − η1 + η2)

∫ ξ−η1

∞
dξ1 . . .

∫ ξq−1

∞
dξq
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×ω̃(ξ1 + η2)ω̃(ξ1 + η3) . . . ω̃(ξq + ηq+1)

×ω̃(ξq)(2s − 2η1)
2q+1

I2q+1(z
1
2
2q+1)

z
2q+1

2
2q+1

z2q+1 = 4(s − η1)�(ξ) + 8(s − η1)

q∑
p=0

(�(ξp + ηp+2)−�(ξp + ηp+1))

ξ0 ≡ ξ ηq+2 ≡ 0 q = 0, 1, 2, . . . .

The functionsIq(x), q > 0, in (A.12) are modified Bessel functions (of the first kind,
see [32] p 5, formula (12)). The results (A.12) have been obtained from (A.10) by repeatedly
using the following sum rule [32]:∑

k>0

1

k!

(
t

2

)k
z−

ν+k
2 Iν+k(z

1
2 ) = (z + t)−

ν
2 Iν((z + t)

1
2 ) (A.13)

valid for anyν.
Formulae (A.12) provide us with the general forms of8̃(q)

1 (ξ, s). However, for the
singularity analysis of the latter the more convenient representation for them is the following
recurrent one:

8̃
(2q+2)
1 (ξ, s) = −

∫
C̃(s)

dη
∫
C̃(η)

dη′
∫
γ̃ (η)

dη1ω̃(ξ1)ω̃(ξ1− η′)(2s − 2η)

×8̃(2q)
1 (ξ1− η′, η − η′) I1(

√
4(s − η)(�(ξ)− 2�(ξ1) +�(ξ1− η′)))√

4(s − η)(�(ξ)− 2�(ξ1) +�(ξ1− η′))
8̃
(2q+1)
1 (ξ, s) = −

∫
C̃(s)

dη
∫
C̃(η)

dη′ω̃(ξ − η′)

×8̃(2q)
1 (ξ − η′, η − η′)I0

(√
−4(s − η)(�(ξ)−�(ξ − η′))

)
q = 0, 1, 2, . . .

(A.14)

where8̃(0)
1 (ξ, s) is given by (A.12).

Note that (A.14) can be obtained from (A.12) and vice versa by applying the following
relations:

∫ 1

0
dxIm(

√
αx)Im

(√
β(1− x)

)
(αx)

1
2m(β(1− x)) 1

2n = 2αmβn
Im+n+1(

√
α + β)

(
√
α + β)m+n+1

× (s − η)
n

n!
= 1

(k − 1)!(n− k)!
∫ s

η

dη′(s − η′)k−1(η′ − η)n−k.
(A.15)

A.3. Analytic properties of the functions̃8(q)

1 (ξ, s)

Since each of the functionsIq(z
1/2
q )/z

q/2
q , q > 0, is an entire function of its argument then

it follows from (A.12) that possible singularities of̃8(q)

1 (ξ, s) are generated by the (known)
singularities of the functions̃ω(η) and�(η) and their integrations present in (A.12). However,
it can be easily checked that the conditions

Reξ > 0 and Res < Reξ (A.16)

determine the domain where the integrands in (A.12) are holomorphic. Therefore, this is also
the domain of holomorphicity of̃8(q)1 (ξ, s) since all the integration paths in (A.1), (A.12) can
be chosen to lie completely in this domain.
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Let us note, however, that as follows from (A.12), each8̃(q)

1 (ξ, s), q > 1 can be
continued analytically from the domain (A.16) to any pointξ of the ξ -Riemann surface of
8̃
(q)

1 (ξ, s) (obtained for fixeds) if the distribution of branch points of̃ω(ξ) along a path of the
corresponding analytical continuation is such that the distance of any of them from the path
is greater than|s|. This statement is the direct conclusion from the corresponding formulae
in (A.12) since all the integrations on theξ -Riemann surface present there are performed inside
a strip no wider than|s|.

Let us note further that for the polynomial potentials the branch points ofω̃(η) are isolated
and on each sheet of theξ -Riemann surface of̃ω(η) their numbers are finite. The distances
between them on each sheet are nothing but the corresponding distances between turning points
measured by the action. Therefore, there is the smallest distanced among them. If we take,
therefore,s in (A.12) such that|s| < d ′ < d/2 then we can penetrate by paths of the analytical
continuations the wholeξ -Riemann surface of̃ω(ξ) if the former is deprived all the circular
vicinities of radiusd ′′, d ′ < d ′′ < d/2, centred at each branch point of the surface. We shall
denote the corresponding part of theξ -Riemann surface asR(d ′′).

Consider now a question of convergence of the series in (A.11). We shall show below that
the series is convergent absolutely and uniformly in the domainR(d ′′). This means that the
series (A.11) determines̃81(ξ, s) as the holomorphic function in these domains.

To this end let us note that if|s| is chosen to satisfy the condition|s| < d ′ < d ′′ all the
integration paths̃γ (ξ −η1) can then be deformed to lie inside an infinite stripS(ξ, s) bounded
by the pathsγ̃ (ξ) and γ̃ (ξ − s) so having the width|s| with the one end of the strip being
placed at the infinity∞1 and the other one being a segment(ξ, ξ − s). The latter bound can be
chosen as such because the pathC̃(s) can be deformed to a segment (with its ends anchored
at the origin and ats). Introducing now the following functions:

|ω̃|(ξr , η1) = lim sup
η∈C̃(η1)

|ω̃(ξr + η1)|

|ρ̃|(ξ, η1) =
∫
γ̃1(ξ)

|dξr ||ω̃|(ξr , η)
(A.17)

we have

|�(ξr + η)| < ρ̃(ξ, η1) η ∈ C̃(η1) ξr ∈ γ̃1(ξ) (A.18)

and forq large enough

|zq | < 8(q + 1)|s − η1|ρ̃(ξ, η1)

|2qz−
q

2
q Iq | < 1

q!
exp(2|s − η1|ρ̃(ξ, η1))

(A.19)

so that

|8̃(2q)
1 (ξ, s)| < ((2q)!q!(q − 1)!)−1

∫ |s|
0

dxxq−1(|s| − x)2q

×
(∫

γ̃1(ξ−η1)

|dη||ω̃|2(η, η1)

)q
exp(2(|s| − x)ρ̃(ξ, η1))

|8̃(2q+1)
1 (ξ, s)| < ((2q + 1)!(q!)2)−1

∫ |s|
0

dxxq(|s| − x)2q+1|ω̃|(η, η1)

×
(∫

γ̃1(ξ−η1)

|dη||ω̃|2(η, η1)

)q
exp(2(|s| − x)ρ̃(ξ, η1))

(A.20)

wherex = |η1|.
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Introducing

|ω|(ξ, s) = lim sup
η1∈C̃(s)

|ω̃|(ξ, η1)

ρ(ξ, s) = lim sup
η1∈C̃(s)

ρ̃(ξ, η1)

Q(ξ, s) = lim sup
η1∈C̃(s)

∫
γ̃1(ξ−η1)

|dη||ω̃|(η, η1)

(A.21)

we obtain finally forq →∞

|8̃(2q)
1 (ξ, s)| < |s|3q

(3q)!q!
Q2q(ξ, s)e2|s|ρ(ξ,s)

|8̃(2q+1)
1 (ξ, s)| < |s|3q+2

(3q + 2)!q!
Q2q(ξ, s)|ω|(ξ, s)e2|s|ρ(ξ,s).

(A.22)

The bounds (A.22) show clearly that the series (A.11) is convergent in the assumed domain
R(d ′′) sinceQ(ξ, s), ρ(ξ, s) and|ω|(η, s) are finite there.

Appendix B

If xp is a simple zero ofq(x) then the pointξp = ξ(x0, xp) is the branch point for the function
ω̃(ξ) defined by (2.5) which can be expounded around the pointξp into the following series:

ω̃(ξ) =
∑
k>−3

ω̃k(ξp)(ξ − ξp)2k/3. (B.1)

The coefficientsω̃k(ξp) in (B.1) are defined by the identitỹω(ξ(x0, x)) ≡ ω(x)q−
1
2 (x) and

the following expansions ofξ(x0, x) andω(x)q−
1
2 (x) (see (2.4)) aroundxp:

ξ(x0, x)− ξp =
∑
k>0

ξk(xp)(x − xp)k+ 3
2

ω(x)q−
1
2 (x) =

∑
k>0

ωk(xp)(x − xp)k−3.
(B.2)

In particular, the coefficient at the most singular term in (B.1)ω̃−3 = −5
36 , i.e. it is potential

independent. It depends, however, on the multiplicity of zero ofq(x) at xp, namely
ω̃−3 = −n(n + 4)/[4(n + 2)2] for then-fold zero.

Appendix C

We establish here the Riemann surface structure of8̃
(q)

1 (ξ, s) for the linear and harmonic
potentials.

C.1. The linear potential

According to section 4.1 the Riemann surface structure of8̃
(1)
1 (ξ, s) for this case is determined

by

8̃
(1)
1 (ξ, s) = −

5

8

∫
C̃(s)

dη
s − η
(ξ − η)2

I1((
5
2
s−η
ξ−η − 5

4
s−η
ξ
)

1
2 )

( 5
2
s−η
ξ−η − 5

4
s−η
ξ
)

1
2

. (C.1)

From (C.1) it follows that its subintegral function is singlar atξ = η and atξ = 0 where

it behaves as e±(ξ−η)
− 1

2 (ξ − η)− 7
4 and e±ξ

− 1
2 ξ

1
2 respectively. Theη-integration generates only
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a singularity ats = ξ (by the EP mechanism) leaving the singularity atξ = 0 and its character
unchanged. Therefore, assumingξ to be continued to sectorS2 (along the canonical path) the
corresponding first sheets of the Riemann surface look as in figures 10(a) and (b).

Consider now8̃(2)
1 (ξ, s). Its Riemann surface structure is defined by

8̃
(2)
1 (ξ, s) = −

25

64

∫
C̃(s)

dη
∫
γ̃ (ξ)

dξ1
(s − η)2
(ξ − η)2ξ2

1

I2(z
1
2 )

z

z = 5

4
(s − η)

(
1

ξ
− 2

ξ1
+

2

ξ1− η
)
.

(C.2)

It follows from (C.2) that the subintegral function is singular atξ1 = η, ξ = 0 and at

ξ1 = 0 behaving there as e±(ξ1−η)−
1
2 (ξ1− η)− 7

4 , e±ξ
− 1

2 ξ
1
2 and e±ξ

− 1
2

1 ξ
− 7

4
1 respectively.

Theξ1-integration in (C.2) generates the EP singularities atξ = η and atξ = 0 but also
the P singularity atη = 0 (when the singularity atξ1 = η move around the endpoint ofγ̃ (ξ)
clockwise, pinching the latter against the singular pointξ1 = 0).

The finalη-integration in (C.2) generates the EP singularity ats = ξ ands = 0 and the P
singularity atξ = 0. Therefore, the ‘closest’ singularities of8̃(2)1 (ξ, s) are the following:

ξ = 0 ξ = η s = 0. (C.3)

Let us make a general note that the EP mechanism repeats the distribution of the branch
points and cuts whilst the P one generates new branch points on the Riemann surfaces
obtained by the EP mechanism always however enforcing specific ways of moving around
the singularities generated by the EP mechanism.

All the singularities in (C.3) are the root branch points (of the fourth order) accompanied
by essential singularities as we have mentioned above. The singularity ats = 0, however, to
be reached needs to round the branch point ats = ξ moving clockwise, i.e. it lies on the sheet
opened by the latter branch point. This singularity is therefore a consequence of the singularity
at ξ = 0.

A similar note concerns the singularity atξ = 0. In fact there are two such singularities
the one on the sheet shown in figure 10(a) (arising by the EP mechanism) and the second one
at the sheet opened by the branch point atξ = η, i.e. to reach it one needs to round this point
clockwise.

One can conclude therefore that the P mechanism applied once has generated a singularity
ats = 0 and applied twice has generated a new singularity atξ = 0 (on a different sheet) from
the old one. It is clear that this mechanism will proliferate the last singularity on all the sheets
of the Riemann surface of̃81(ξ, s) except the sheet we have started with on which the point
s = 0 is regular for8̃1(ξ, s).

Now we can use the formulae (A.14) to prove the form of the first sheet of the Riemann
surface as shown in figures 10(a) and (b). Namely, assuming for̃8(2q)

1 (ξ, s) the form of this
sheet shown in the last figure we deduce that it remains unchanged for8̃

(2q+2)
1 (ξ, s) whilst it

is deprived of the singularity ats = 0 for 8̃(2q+1)
1 (ξ, s).

Indeed, consider the subintegral function in the first of the formulae (A.14) defining
8̃
(2q+2)
1 (ξ, s). It has singularities at the following points:

ξ = 0 ξ1 = 0 ξ1− η′ = 0 ξ1− η = 0 η − η′ = 0 (C.4)

shown in figure C.1(a) for theξ1-Riemann surface (when the rest of the variables are fixed).
Theξ1-integration provides us with the EP singularities atξ = 0,ξ−η = 0 andξ−η′ = 0

and with the P ones atη = 0, η′ = 0 (when the pointξ is rounded byη andη′ clockwise to
touch the pointξ = 0 by the latter) and atη = η′ (when the pointη(η′) roundsξ clockwise
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η

ξ

ξ

η

ξ γ(ξ)

η

η

η

ξ

Figure C.1. The ‘first sheets’ singularity pattern of the subintegral function defining8̃
(2q+1)
1 (ξ, s)

for the linear potential (a) before theξ1-integration and (b) after it.

(anticlockwise) to touchη′(η)). In this way we get the singularity pattern before theη′-
integration shown in figure C.1(b) where the singularities atη′ = 0 and atη′ = η are screened
by theξ -cut and to get them one has to go aroundξ clockwise or anticlockwise respectively.

Theη′-integration therefore does not do much now, providing us with the singularity at
η = ξ and atη = 0 (by the EP mechanism) and atξ = 0 (by the P one) with the latter
singularity placed on a sheet opened by the singularity atξ = η.

The finalη-integration only repeats the singularity pattern described above so we are left
with the distribution of the singularities as shown in figures 10(a) and (b).

Consider now the second formula (A.14). There is no theξ1-integration and therefore
the singularity atη′ = 0 is not generated and the other singularities atξ = 0, η = 0 and
s = 0 cannot be generated either by furtherη′- andη-integrations. Also, the generation of the
singularities atξ = s goes exactly in the same way so that the final picture of the corresponding
Rieman surface is the same as in figure 10, apart from missing the respective singularities at
ξ = 0 ands = 0 on the lower sheets.

C.2. The harmonic potential

We assume herẽγ1(ξ) to be continued canonically to sectorS3 of figure 11 and we put
ξ(i) = ∫ i

−i
√
x2 + 1dx = ζ . Neitherω̃(ξ) nor�(ξ)are now simple functions ofξ . ω̃(ξ) is

periodic (with its period 2ζ acting between different sheets of the infinitely sheeted Riemann
surface on which this function is defined) whilst�(ξ) is not.

Consider again, however,̃8(1)
1 (ξ, s) as given by (4.1). The closest singularities of the

subintegral function are shown in figure C.2, i.e. they are

ξ = 0 ξ − ζ = 0 ξ − η = 0 ξ − η − ζ = 0. (C.5)

Therefore theη-integration in (4.1) provides us with the following singularities of
8̃
(1)
1 (ξ, s) shown in figure 12:

ξ = 0 ξ − ζ = 0 ξ − s = 0 ξ − ζ − s = 0 (C.6)

i.e. no P singularity is generated.
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γ (ξ)

ξ

η +ζ

η

ξ

ξ

ζ

η

η

η

ξ

(η)

ξ−ζ

Figure C.2. The singularities of the subintegral function in (4.1) defining8̃(1)1 (ξ, s) for the
harmonic potential.

Consider next8̃(2)
1 (ξ, s). According to (4.3) singularities of the subintegral function in

this formula are now

ξ = 0 ξ − ζ = 0 ξ1 = 0 ξ1− ζ = 0

ξ1− η ξ1− ζ − η = 0
(C.7)

and we can use figure C.2 to show the corresponding situation for theξ1- andη-dependance
by making the substitutionξ → ξ1 in the figure.

Theξ1-integration generates the following singularities:

ξ = 0 ξ − ζ = 0 ξ − η = 0 ξ − ζ − η = 0 (C.8)

by the EP mechanism and

η = 0 η − ζ = 0 η + ζ = 0 (C.9)

by the P mechanism. The latter singularities lie on the ‘lower’ sheets of theη-Riemann surface.
Finally, integrating in (4.3) overη we generate singularities of8̃(2)1 (ξ, s) at

ξ − s = 0 ξ − ζ − s = 0 s − ζ = 0 s + ζ = 0 (C.10)

by the EP mechanism and at

ξ + ζ = 0 ξ = 0 ξ − ζ = 0 ξ − 2ζ = 0 (C.11)

by the P mechanism. The proper distribution of these singularities is shown on figure 13.
Now we can proceed inductively assuming for8̃

(2q)
1 (ξ, s) the singularity pattern shown in

figure 14 wherẽγ (ξ) is the integration path in formulae (A.12)–(A.14) andC the corresponding
path to recover fromχ(2q)1 (ξ, λ) by the Borel transformation (ats = 0 8̃(2q)

1 (ξ, s) is then
regular).

Taking into account the second of formulae (A.14) we see that the singularities of the
subintegral function are determined mostly by its factor8̃

(2q)
1 (ξ − η′, η − η′) according to

which and figure C.3(a) these singularity are at the points

ξ − η = 0 ξ − η − ζ = 0 ξ − η′ − kζ = 0 k = −(2q − 1), . . . ,2q

η′ − η + kζ = 0 k = −(2q − 1), . . . , (2q − 1) k 6= 0
(C.12)

shown for the case of the correspondingη′-Riemann surface in figure C.3(b).
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η +2 ζ

η

η−2ζ

η−ζ
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η

η

ξ−2 ζ

ξ−2ζ

ξ−ζ

ξ

η+2ζξ+2ζ

η+ζ (η)

ξ+(2 −1)ζ η+(2 −1)ζ

η−(2 −1)ζ

ξ+ζ

−ζ

ξ−2 ζ

ξ−2ζ

ξ−ζ

ξ

ζ
ξ+ζ

ξ+2ζ

η

η

ξ+(2 −1)ζ

Figure C.3. The singularity structure of̃8(2q)1 (ξ − η′, η−
η′) for the harmonic potential (a) in theξ -plane, (b) in the
η′-plane and (c) in theη-plane after theη′-integration.

Therefore, making theη′-integration we obtain the ‘η-plane’ singularity pattern shown in
figure C.3(c) on which theξ -dependent singularities are created by the EP mechanism whilst
the two fixed ones on the imaginary axis by the P mechanism. Other singularities generated
in the last way appear on the lower sheets originated by the two singularities atη = ζ and
η = ζ ′.

The successiveη-integration changes nothing in thes-variable singularity pattern (in
comparison with this on figure C.3(c)) so providing us finally with its form shown in
figure 15(b), but it seriously changes the original pattern of figure 14(a). That is, the
EP mechanism generates theξ -singularities at the pointsξ = s − (2q − 1)ζ, s −
(2q − 2)ζ, . . . , s − ζ, s, s + ζ, . . . , s + 2qζ and by the P-mechanism at the pointsξ =
−2qζ, . . . ,−ζ, 0, ζ, . . . , (2q + 1)ζ . As the final result we have for̃8(2q+1)

1 (ξ, s) the picture
of figure 15 for both types of singularities.

The corresponding analysis of the case8̃
(2q+2)
1 (ξ, s) is a little more tedious but nevertheless

direct due to the first of the formulae (A.14). The valid singularities of the subintegral function
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η+2 ζ
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Figure C.4. The subintegral singularities in (A.14) defining
8̃
(2q+2)
1 (ξ, s) (a) in theξ1-plane, (b) in theη-plane after the

ξ1-integration in (A.14) and (c) in theη-plane after theη′-
integration.

in this case are

ξ1 = 0 ξ1− η = 0

ξ1− η = 0 ξ1− η − ζ = 0 ξ1− η′ − kζ = 0

k = −(2q − 1), . . . ,2q

η′ − η + kζ = 0 k = −(2q − 1), . . . , (2q − 1) k 6= 0.

(C.13)

The firstξ1-integration is performed on the sheet shown in figure C.4(a). By the EP and
P mechanism it generatesη- andη′-singularities. Limiting ourselves to collect only these
singularities which appear on theη′-sheet on which the result of thisξ1-integration is regular
atη′ = 0 we arrive at the pattern shown in figure C.4(b).

The successiveη′-integration leads us to the ‘η-plane’ pattern shown in figure C.4(c) where
the twoξ -dependent singularities were produced by the EP mechanism whilst the fixed ones
by the EP and P mechanisms simultaneously with the exception of the highest two ones at
η = −(2q + 1)ζ andη = (2q + 1)ζ which are generated by the P mechanism only.

The final η-integration in (A.14) provide us with a pattern analogous to the one of
figure 14(a) by the EP and P mechanism and with the pattern of figure 14(b) by the EP
mechanism whenq is substituted byq + 1.
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Appendix D

We describe here a procedure allowing us to construct in a systematic way the optimum
semiclassical representation for the Borel summable quantity including both the main
contribution coming from the semiclassical series abbreviated at its least term and the
corresponding exponential contributions of an arbitrary order. In its finite form the procedure
provides us with the exact formula for the quantity considered. However, if continued infinitely
the procedure give rise to the question of convergence of the infinite functional series we get
by it.

To this goal we shall consider the basic quantity given by the formula (2.8). Integrating
in it by parts we get

χ1(ξ, λ) = 2λ

( n∑
k=0

(−1)k

(2λ)k+1
χ̃
(k)
1 (ξ, 0) +

(−1)n+1

(2λ)n+1

∫
C̃

e2λsχ̃
(n+1)
1 (ξ, s)ds

)
. (D.1)

According to the well known prescription (which can be easily justified by the analysis
similar to the one performed below) we should putn = n0 = [λ|s0|] in (D.1) where [x] means
the integer part ofx ands0 is a singularity ofχ̃1(ξ, s) closest to the origin. Next we should
extract from the integral the exponentially small factor and finally continue the procedure to
the remaining Borel integral. This can be done in the following way.

First the(n0 + 1)th derivative ofχ̃1(ξ, s) can be given the form

χ̃
(n0+1)
1 (ξ, s) = (−1)n0+1(n0 + 1)!

2πi

∫
K

χ̃1(ξ, s + t)t−n0−2 dt (D.2)

with the integration contourK in (D.2) surrounding anticlockwise the negative half-axis of
the Borel plane (see figure 5).

As follows from figure 2,s0 = ξ − ζ1 = ξ (sinceζ1 = 0, see figure 4). Deforming the
contourK to surround the cuts generated by the pointsξ − ζ1 andξ − ζ2 of figure 5 (for
ξ chosen as in the figure they are the unique cuts visible in these positions) and shifting the
integration variable in the corresponding integrals we get

χ̃
(n+1)
1 (ξ, s) = (−1)n0+1(n0 + 1)!

2π i

2∑
j=1

∫
Kj

χ̃1(ξ − ζj + t)(ξ − ζj − s + t)−n0−2 dt (D.3)

where the contoursKj surround (anticlockwise) the cuts whose origins are at the pointt = 0.
Further substituting (D.3) to (D.1) and changing both the order of integrations in (D.3)

and the integration variables themselves we get as a result of these calculations

χ1(ξ, λ) =
n0∑
k=0

(−1)k

(2λ)k
χ̃
(k)
1 (ξ, 0)−

2∑
j=1

(n0 + 1)!

(2λ)n0(ξ − ζj )n0

∫
C̃

e2λsκj (ξ, s)ds (D.4)

where

κj (ξ, s) = 1

2π i

∫
Kj

dt
χ̃1(ξ, ξ − ζj + t)

(1 + t
ξ−ζj )

n0

1/

(
t + ξ − ζj +

n0

λ
ln

(
1 +

t

ξ − ζj

)
− s

)
×
(
t + ξ − ζj +

n0

λ
+
n0

λ
ln

(
1 +

t

ξ − ζj

)
− s

)
j = 1, 2

(D.5)

and where the contoursKj run again around the cuts anchored att = 0.



Topological expansion and exponential asymptotics 1579

The form (D.5) forκ allows us to continue the procedure of getting the asymptotic series
expansions for the integrals in (D.4) and to abbreviate the series at their least terms. The
latter are to be determind by the singularities generated by thet-integrals in thes-plane (as a
result of the pinch mechanism) closest to the origin of the plane. It is easy to see that among
possible candidates for the latter are the singularities ats = ξ , ξ + n0/λ for κ1(ξ, s) and the
ones ats = ξ − ζ2, ξ + n0/λ − ζ2 for κ2(ξ, s) (all the singularities are generated by the P
mechanism att = 0). However, the integrations in (D.5) along the corresponding cuts open
possibilities for new singularities to appear generated by thet-singularities shared by the cuts.
These possibilities still enrich the variety of singularities which have to be taken into account
in choosing the one closest to the origin of thes-plane.

Therefore, to construct the representation (D.1) for each of the two integrals in (D.4) we
have to choose from the singularities corresponding to eachκ the ones which are closest to the
origin. When these choices are done the procedure described above can be repeated.

Let us call κj , j = 1, 2, defined by (D.5) the first generation family considering
κ0(ξ, s) ≡ χ̃1(ξ, s) as the zeroth generation one. It is clear that the general form of the
optimum semiclassical representation forχ1(ξ, λ) is the following:

χ1(ξ, λ) = 2λ
n0∑
m=0

(−1)m ˜χ1(ξ, 0)

(2λ)m+1

×2λ
p∑
k=1

(−1)k
∑
j1,...,jk

k∏
l=1

(njl−1 + 1)!

(2λ)njl−1+1(ξ − ζj )njl−1

njk∑
m=0

(−1)mκ(m)j1,...,jk
(ξ, 0)

(2λ)m+1

×2λ(−1)p+1
∑

j1,...,jp+1

p+1∏
l=1

(njl−1 + 1)!

(2λ)njl−1+1(ξ − ζj )njl−1

∫
C̃

e2λsκj1,...,jp+1(ξ, s)ds (D.6)

wherej0 ≡ 0 andκj1...jp+1 constitute the(p + 1)th generation family. The latter is constructed
from thepth one (withζjp as its singular points and withnjp/λ = |ζ 0

jp| being the singularity
closest to the origin) according to the formulae (D.2)–(D.5).

It is important to stress that (D.6) is exact and its rhs becomes an approximation to the left
one only when the last sum of the rhs containing the integrals is rejected.

Appendix E

We shall show below that the last term on the rhs sum in (4.15) has to vanish whenλ0→ 0. To
this end let us note that we can rewrite the integral present in this term in the following way:∫
C ′(λ0)

exp(2λs) logχ1→3(λ) dλ =
∫
C 1

2

[exp(2λs) logχ1→3(λ) + exp(−2λs) logχ1→3(−λ)] dλ

=
∫
C 1

2

[exp(2λs)− exp(−2λs)] logχ1→3(λ) dλ

+
∫
Cd1

2

exp(−2λs)[1 + exp(−2π iλ)] dλ +
∫
Cu1

2

exp(−2λs)[1 exp(2π iλ)] dλ

(E.1)

whereC 1
2

is the half-circle of radiusλ0 lying in the right half of theλ-plane, andCu1
2

andCd1
2

are

the corresponding upper and lower halves ofC 1
2
. We have also made use of the relations (4.11)

to obtain the final form of (C.1). It now follows from (4.10) that we have

lim
λ→0

χ1→3(λ) =
√

2 for | argλ| < π. (E.2)
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Therefore, we can conclude that both log|χ1→3(λ)| and argχ1→3(λ) are bounded in the
half-plane Reλ > 0. The vanishing of all the integrals in (E.1) whenλ0 → 0 now follows
directly from the last conclusion.
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[4] Fröman N and Fr̈oman P O 1965JWKB Approximation. Contribution to the Theory(Amsterdam: North-Holland)
[5] Graffi S, Grecchi V and Simon B 1970Phys. Lett.B 32631
[6] Simon B and Dicke A 1970Ann. Phys., NY5876
[7] Bender C M and Wu T T 1969Phys. Rev.1841231

Bender C M and Wu T T 1973Phys. Rev.D 7 1620
[8] Loeffel J J, Martin A, Simon B and Wightman A S 1969Phys. Lett.B 30656
[9] Horzela A 1986Acta Phys. Pol.B 17425

[10] Čizek J and Vrscay E R 1984Phys. Rev.A 301550
[11] Giller S 1989J. Phys. A: Math. Gen.222965
[12] Giller S 1990Acta Phys. Pol.B 21675–709
[13] Eden R J, Landshoff P V, Olive D I and Polkinghorn J C 1966The Analytic S-Matrix(Cambridge: Cambridge

University Press)
[14] Zinn-Justin J 1977Salamanca 1977(Lecture Notes in Physics vol 126)ed J A Azcerraga (Berlin: Springer) p 77

Zinn-Justin J 1981Phys. Rep.70109
[15] Carlitz R N and Nicole D A 1985Ann. Phys., NY164 411

Carlitz R N 1984Pittsburgh preprintPITT-19-84
[16] Nicole D A and Walters P J 1988J. Phys. A: Math. Gen.212351
[17] Millard P A 1985Nucl. Phys.B 259266
[18] Garrison J C and Wright E M 1985Phys. Lett.A 108129
[19] Voros A 1983Ann. Inst. Henri PoincaŕeA 39211
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